我们考虑采用转移学习方法,可以在目标任务上微调一个预处理的深神经网络。我们研究微调的概括特性,以了解过度拟合的问题,而这种问题通常在实践中发生。先前的工作表明,约束与微调初始化的距离可改善概括。使用Pac-bayesian分析,我们观察到,除了初始化的距离外,黑森人还通过深神网络的噪声稳定性影响噪声注射。在观察过程中,我们为广泛的微调方法开发了基于HESSIAN距离的概括界。此外,我们研究了在嘈杂标签的情况下进行微调的鲁棒性。在我们的理论中,我们设计了一种算法,该算法结合了一致的损失和基于距离的正则化,以进行微调,以及在训练集标签中有条件独立噪声下的概括错误保证。我们对各种嘈杂的环境和体系结构进行了详细的经验研究。在六个图像分类任务上,其训练标签是通过编程标签生成的,我们发现比先前的微调方法的精度增长了3.26%。同时,微型模型的Hessian距离度量降低了六倍,是现有方法的六倍。
translated by 谷歌翻译
一种广泛使用的传输学习算法是微调的,其中预先接受的模型在具有少量标记数据的目标任务上进行微调。当预训练模型的容量大于目标数据集的大小时,微调容易过度,并“记忆”训练标签。因此,一个重要的问题是规范微调,并确保其对噪声的鲁棒性。为了解决这个问题,我们首先分析微调的泛化属性。我们介绍了PAC-Bayes泛化界定,这取决于在微调和微调模型的噪声稳定期间在每层中行进的距离。我们经验衡量这些数量。根据分析,我们建议正规化的自我标签 - 正规化和自我标记方法之间的插值,包括(i)层明智的正则化,以限制在每层中行进的距离; (ii)自我标记 - 纠正和标签重新重复纠正错误标记的数据点(模型是自信的)和重新重复的自信数据点。我们在使用多个预先训练的模型体系结构上验证我们的方法和文本数据集的广泛集合和文本数据集。我们的方法将基线方法提高了1.76%(平均),可实现七种图像分类任务和0.75%,为几次拍摄的分类任务。当目标数据集包括嘈杂的标签时,我们的方法在两个嘈杂的设置中平均优于基线方法3.56%。
translated by 谷歌翻译
在这项工作中,我们提出了基于特征的学习和空中交通管制(ATC)系统的终端到终端的训练过程一个新的自动语音识别(ASR)系统。该模型集成了地物学习块,回归神经网络(RNN),以及联结时间分类的损失建立一个终端到终端的ASR模式。面对代替手工功能ATC讲话的复杂环境,学习型块设计能够从声学建模原始波形信息量大的特点。两者SincNet和1D卷积块被施加到处理原始波形,其输出被连接到RNN层用于时间建模。由于学习从原始波形交涉的能力,该模型可以在一个完整的端至端的方式进行优化,即从波形文本。最后,在ATC域的多语言问题也被认为是通过构建中国字符和英文字母的组合词汇来实现ASR任务。所提出的方法进行验证在一个多语种的真实世界的语料库(ATCSpeech),实验结果表明,该方法比其他基线,实现了6.9 \%字符错误率。
translated by 谷歌翻译
在空中交通管制(ATC)控制器飞行员谈话的自动语音指令的理解(SIU)不仅需要认识到的演讲词和语义,但也确定了演讲者的角色。然而,很少有在空中交通通信专注于扬声器的作用识别(SRI)自动认识系统发表的作品。在本文中,我们制定管制员 - 驾驶员通信的SRI任务作为二元分类问题。提出此外,基于文本的,基于语音和语音和文本为基础的多模态的方法来达到SRI任务的全面比较。消融的比较方法的影响,各种先进的神经网络架构应用进行优化的,基于语音的基于文本和方法的实现。最重要的是,多模态扬声器的作用识别网络(MMSRINet)设计同时考虑语音和文本模式功能实现的SRI任务。聚集形态特征,模态融合模块提出了保险丝和模态注意机制和自我关注池层,分别挤声音和文本表示。最后,比较的方法进行验证从现实世界ATC环境中收集的语料库ATCSpeech。实验结果表明,所有的比较方法是对SRI任务分别工作,并提议MMSRINet显示出比上都看到和看不到数据的其他方法的有竞争力的性能和稳定性,达到98.56%,98.08和%的准确度。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译